login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007858
G.f. is 1 - 1/f(x), where f(x) = 1+x+3*x^2+9*x^3+32*x^4+... is 1/x times g.f. for A063020.
2
1, 2, 4, 13, 44, 164, 636, 2559, 10556, 44440, 190112, 824135, 3612244, 15981632, 71277736, 320121747, 1446537564, 6571858168, 30000766128, 137544893940, 633051803120, 2923867281660, 13547594977500, 62955434735505, 293336372858724, 1370149533359784, 6414423856436816
OFFSET
1,2
COMMENTS
Number of maximal independent sets in rooted plane trees on n nodes. - Olivier Gérard, Jul 05 2001
LINKS
M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
A. Mironov and A. Morozov, Algebra of quantum C-polynomials, arXiv:2009.11641 [hep-th], 2020.
FORMULA
a(n+1) = Sum_{k = 1..n} ( binomial(n+k,k)/(n+k)*Sum_{j = 0..k} ( binomial(j,n-k-j+1)*binomial(k,j)*(-1)^(n+k-j+1) ) ) + C(n), where C(n) is a Catalan number. - Vladimir Kruchinin, Nov 13 2014
Recurrence: 16*(n-1)*n*(2*n-3)*(17*n^2 - 81*n + 96)*a(n) = (n-1)*(1819*n^4 - 14124*n^3 + 40377*n^2 - 50320*n + 23040)*a(n-1) + 8*(2*n-5)*(4*n-11)*(4*n-9)*(17*n^2 - 47*n + 32)*a(n-2). - Vaclav Kotesovec, Nov 14 2014
Asymptotics (Klazar, 1997): a(n) ~ sqrt(5731-4635/sqrt(17)) * ((107+51*sqrt(17))/64)^n / (256 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 14 2014
MAPLE
series(1-x/RootOf(_Z-_Z^2-_Z^3+_Z^4-x), x=0, 20); # Mark van Hoeij, May 28 2013
MATHEMATICA
Rest[CoefficientList[1-x/InverseSeries[Series[x-x^2-x^3+x^4, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Nov 14 2014 *)
Table[Sum[Binomial[n + k, k]/(n + k)*Sum[(Binomial[j, n - k - j + 1]*
Binomial[k, j]*(-1)^(n + k - j + 1)), {j, 0, k}], {k, 1, n}] + CatalanNumber[n], {n, 0, 50}] (* G. C. Greubel, Feb 15 2017 *)
PROG
(PARI) x='x+O('x^66); Vec(1-x/serreverse(x-x^2-x^3+x^4)) \\ Joerg Arndt, May 28 2013
(Maxima)
a(n):=sum(binomial(n+k, k)/(n+k)*sum(binomial(j, n-k-j+1)*binomial(k, j)*(-1)^(n+k-j+1), j, 0, k), k, 1, n)+1/(n+1)*binomial(2*n, n); // Vladimir Kruchinin, Nov 13 2014
CROSSREFS
Cf. A000108.
Sequence in context: A001548 A193057 A115600 * A337797 A300931 A286074
KEYWORD
nonn
AUTHOR
Martin Klazar, Mar 15 1996
STATUS
approved