Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 26 2023 15:11:14
%S 0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,
%T 5,5,8,8,8,8,8,8,8,8,8,8,8,8,8,13,13,13,13,13,13,13,13,13,13,13,13,13,
%U 13,13,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,34,34,34,34,34
%N a(n) = Fibonacci(floor(sqrt(n))).
%D D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 62, 1986.
%H John M. Campbell, <a href="/A115338/a115338.pdf">Sums of Fibonacci Numbers Indexed by Integer Parts</a>, Fibonacci Q., 61 (2023), 143-152.
%F Since F(n) = round((phi^n)/(sqrt(5))), where phi is (1 + sqrt 5 )/2 = A001622, we have a(n) = round((phi^[sqrt(n)])/(sqrt(5))). - _Jonathan Vos Post_, Mar 08 2006
%F a(n) = F([sqrt(n)]).
%F a(n) = A000045(A000196(n)).
%F a(n) = round((phi^[sqrt(n)])/(sqrt(5))).
%e a(143) = F([sqrt(143)]) = F([11.958]) = F(11) = 89,
%e a(144) = F([sqrt(144)]) = F([12]) = F(12) = 144,
%e a(145) = F([sqrt(145)]) = F([12.042]) = F(12) = 144.
%t Table[Fibonacci[Floor[Sqrt[n]]], {n, 0, 70}] (* _Stefan Steinerberger_, Mar 08 2006 *)
%Y Cf. A000045, A000196, A001622.
%K nonn,easy
%O 0,10
%A _Giuseppe Coppoletta_, Mar 06 2006
%E More terms from _Stefan Steinerberger_ and _Jonathan Vos Post_, Mar 08 2006