Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 06 2021 16:25:18
%S 1,2,3,5,7,6,9,12,9,13,17,12,17,22,15,21,27,18,25,32,21,29,37,24,33,
%T 42,27,37,47,30,41,52,33,45,57,36,49,62,39,53,67,42,57,72,45,61,77,48,
%U 65,82,51,69,87,54,73,92,57,77,97,60,81,102,63,85,107,66,89,112,69,93,117
%N a(n) = n + A115273(n), where A115273(n) = 0 for n = 1..3.
%C Three arithmetic progressions interlaced: a(1..3) = 1..3 and d = a(n+3)-a(n) = 4,5,3.
%H Colin Barker, <a href="/A115274/b115274.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).
%F a(n) = n+floor(n/3)*(n mod 3), n = 1, 2, ...
%F a(n) = 2*a(n-3)-a(n-6). - _Colin Barker_, May 11 2015
%F G.f.: x*(3*x^4+3*x^3+3*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^2). - _Colin Barker_, May 11 2015
%F E.g.f.: (-5+12*x)*exp(x)/9 + (3+2*x)*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)/9 + 5*exp(-x/2)*cos(sqrt(3)*x/2)/9. - _Robert Israel_, May 11 2015
%p seq(op([1+4*j,2+5*j,3+3*j]),j=0..100); # _Robert Israel_, May 11 2015
%t Table[n+Floor[n/3]*Mod[n, 3], {n, 78}]
%t LinearRecurrence[{0,0,2,0,0,-1},{1,2,3,5,7,6},80] (* _Harvey P. Dale_, Aug 06 2021 *)
%o (PARI) Vec(x*(3*x^4+3*x^3+3*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^2) + O(x^100)) \\ _Colin Barker_, May 11 2015
%Y Cf. A115273.
%K nonn,easy
%O 1,2
%A _Zak Seidov_, Jan 18 2006