login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115274
a(n) = n + A115273(n), where A115273(n) = 0 for n = 1..3.
2
1, 2, 3, 5, 7, 6, 9, 12, 9, 13, 17, 12, 17, 22, 15, 21, 27, 18, 25, 32, 21, 29, 37, 24, 33, 42, 27, 37, 47, 30, 41, 52, 33, 45, 57, 36, 49, 62, 39, 53, 67, 42, 57, 72, 45, 61, 77, 48, 65, 82, 51, 69, 87, 54, 73, 92, 57, 77, 97, 60, 81, 102, 63, 85, 107, 66, 89, 112, 69, 93, 117
OFFSET
1,2
COMMENTS
Three arithmetic progressions interlaced: a(1..3) = 1..3 and d = a(n+3)-a(n) = 4,5,3.
FORMULA
a(n) = n+floor(n/3)*(n mod 3), n = 1, 2, ...
a(n) = 2*a(n-3)-a(n-6). - Colin Barker, May 11 2015
G.f.: x*(3*x^4+3*x^3+3*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, May 11 2015
E.g.f.: (-5+12*x)*exp(x)/9 + (3+2*x)*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)/9 + 5*exp(-x/2)*cos(sqrt(3)*x/2)/9. - Robert Israel, May 11 2015
MAPLE
seq(op([1+4*j, 2+5*j, 3+3*j]), j=0..100); # Robert Israel, May 11 2015
MATHEMATICA
Table[n+Floor[n/3]*Mod[n, 3], {n, 78}]
LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 2, 3, 5, 7, 6}, 80] (* Harvey P. Dale, Aug 06 2021 *)
PROG
(PARI) Vec(x*(3*x^4+3*x^3+3*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, May 11 2015
CROSSREFS
Cf. A115273.
Sequence in context: A081622 A064143 A283593 * A126890 A122637 A076229
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Jan 18 2006
STATUS
approved