Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 May 05 2023 07:44:29
%S 0,2,12,50,204,818,3276,13106,52428,209714,838860,3355442,13421772,
%T 53687090,214748364,858993458,3435973836,13743895346,54975581388,
%U 219902325554,879609302220,3518437208882,14073748835532,56294995342130,225179981368524,900719925474098
%N G.f.: (4*x^2 + 2*x)/(4*x^3 - x^2 - 4*x + 1).
%C Inverse Z-transform of polynomial in A112627.
%C a(n) is also the number of corners in the n-th approximation of the Hilbert Curve. The 1st Hilbert Curve approximation has 2 corners. To find a(n) given a(n - 1), look at how the n-th Hilbert Curve approximation is constructed: duplicate the (n-1)-th approximation 4 times and connect the duplicates with 3 line segments. a(n) will always be 4 * a(n - 1) corners from the 4 duplicates plus 4 new corners if n is even or 2 new corners if n is odd. - _Mikel Mcdaniel_, Jan 10 2019
%H G. C. Greubel, <a href="/A115243/b115243.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,1,-4).
%F a(n) = InverseZTransform[(1 + 2*x)/(1 - x - 16*x^2 + 16*x^3), x, n] * 2^(2*n).
%F a(n) = 5*a(n-1)-4*a(n-2) +2*(-1)^n.
%F a(n) = 4*a(n-1)+a(n-2)-4*a(n-3). - _Gary Detlefs_ Dec 17 2010
%F a(n) = (4^(n+1)+(-1)^n)/5 - 1. - _Robert Israel_, Mar 09 2016
%F a(n) = 4*a(n-1)+3+(-1)^n. - _Mikel Mcdaniel_, Jan 10 2019
%p seq((4^(n+1)+(-1)^n)/5 - 1, n=0..100); # _Robert Israel_, Mar 09 2016
%t Table[InverseZTransform[(1 + 2*x)/(1 - x - 16*x^2 + 16*x^3), x, n]*2^( 2*n), {n, 1, 25}]
%t LinearRecurrence[{4, 1, -4}, {0, 2, 12}, 50] (* _G. C. Greubel_, Feb 07 2016 *)
%o (Magma) [(4^(n+1)+(-1)^n)/5 - 1: n in [0..25]]; // _Vincenzo Librandi_, Jan 10 2019
%o (PARI) a(n) = (bitneg(0,2*n+2)-1)\5; \\ _Kevin Ryde_, May 05 2023
%Y Cf. A112627.
%K nonn,easy
%O 0,2
%A _Roger L. Bagula_, Mar 04 2006
%E Entry revised by _N. J. A. Sloane_, Dec 18 2010