login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115243
G.f.: (4*x^2 + 2*x)/(4*x^3 - x^2 - 4*x + 1).
1
0, 2, 12, 50, 204, 818, 3276, 13106, 52428, 209714, 838860, 3355442, 13421772, 53687090, 214748364, 858993458, 3435973836, 13743895346, 54975581388, 219902325554, 879609302220, 3518437208882, 14073748835532, 56294995342130, 225179981368524, 900719925474098
OFFSET
0,2
COMMENTS
Inverse Z-transform of polynomial in A112627.
a(n) is also the number of corners in the n-th approximation of the Hilbert Curve. The 1st Hilbert Curve approximation has 2 corners. To find a(n) given a(n - 1), look at how the n-th Hilbert Curve approximation is constructed: duplicate the (n-1)-th approximation 4 times and connect the duplicates with 3 line segments. a(n) will always be 4 * a(n - 1) corners from the 4 duplicates plus 4 new corners if n is even or 2 new corners if n is odd. - Mikel Mcdaniel, Jan 10 2019
FORMULA
a(n) = InverseZTransform[(1 + 2*x)/(1 - x - 16*x^2 + 16*x^3), x, n] * 2^(2*n).
a(n) = 5*a(n-1)-4*a(n-2) +2*(-1)^n.
a(n) = 4*a(n-1)+a(n-2)-4*a(n-3). - Gary Detlefs Dec 17 2010
a(n) = (4^(n+1)+(-1)^n)/5 - 1. - Robert Israel, Mar 09 2016
a(n) = 4*a(n-1)+3+(-1)^n. - Mikel Mcdaniel, Jan 10 2019
MAPLE
seq((4^(n+1)+(-1)^n)/5 - 1, n=0..100); # Robert Israel, Mar 09 2016
MATHEMATICA
Table[InverseZTransform[(1 + 2*x)/(1 - x - 16*x^2 + 16*x^3), x, n]*2^( 2*n), {n, 1, 25}]
LinearRecurrence[{4, 1, -4}, {0, 2, 12}, 50] (* G. C. Greubel, Feb 07 2016 *)
PROG
(Magma) [(4^(n+1)+(-1)^n)/5 - 1: n in [0..25]]; // Vincenzo Librandi, Jan 10 2019
(PARI) a(n) = (bitneg(0, 2*n+2)-1)\5; \\ Kevin Ryde, May 05 2023
CROSSREFS
Cf. A112627.
Sequence in context: A259802 A202789 A129743 * A218776 A241683 A341546
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 04 2006
EXTENSIONS
Entry revised by N. J. A. Sloane, Dec 18 2010
STATUS
approved