login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115239
a(1) = floor(Pi) = 3; a(n+1) = floor(a(n)*Pi).
4
3, 9, 28, 87, 273, 857, 2692, 8457, 26568, 83465, 262213, 823766, 2587937, 8130243, 25541911, 80242279, 252088554, 791959549, 2488014301, 7816327450, 24555716894, 77144059797, 242355211526, 761381352089, 2391950062303
OFFSET
1,1
COMMENTS
a(n+1)/a(n) converges to Pi. Similar to sequence A085839 but with a simpler definition.
Subset of the Beatty sequence of Pi = A022844 = floor(n*Pi). Primes in this sequence include a(1) = 3, a(6) = 857, a(15) = 25541911. - Jonathan Vos Post, Jan 18 2006
LINKS
Eric Weisstein's World of Mathematics, Beatty Sequence.
EXAMPLE
a(2) = floor(a(1)*Pi) = floor(3*Pi) = 9;
a(3) = floor(a(2)*Pi) = floor(9*Pi) = 28;
a(4) = floor(a(3)*Pi) = floor(28*Pi) = 87.
MAPLE
A[1]:= 3:
for n from 2 to 50 do A[n]:= floor(Pi*A[n-1]) od:
seq(A[i], i=1..50); # Robert Israel, Feb 07 2016
MATHEMATICA
a[1] = Floor[Pi]; a[n_] := a[n] = Floor[a[n - 1]*Pi]; Array[a, 25] (* Robert G. Wilson v, Jan 18 2006 *)
NestList[Floor[Pi #]&, 3, 30] (* Harvey P. Dale, Mar 30 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Jan 17 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jan 18 2006
STATUS
approved