login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115239 a(1) = floor(Pi) = 3; a(n+1) = floor(a(n)*Pi). 4
3, 9, 28, 87, 273, 857, 2692, 8457, 26568, 83465, 262213, 823766, 2587937, 8130243, 25541911, 80242279, 252088554, 791959549, 2488014301, 7816327450, 24555716894, 77144059797, 242355211526, 761381352089, 2391950062303 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n+1)/a(n) converges to Pi. Similar to sequence A085839 but with a simpler definition.
Subset of the Beatty sequence of Pi = A022844 = floor(n*Pi). Primes in this sequence include a(1) = 3, a(6) = 857, a(15) = 25541911. - Jonathan Vos Post, Jan 18 2006
LINKS
Eric Weisstein's World of Mathematics, Beatty Sequence.
EXAMPLE
a(2) = floor(a(1)*Pi) = floor(3*Pi) = 9;
a(3) = floor(a(2)*Pi) = floor(9*Pi) = 28;
a(4) = floor(a(3)*Pi) = floor(28*Pi) = 87.
MAPLE
A[1]:= 3:
for n from 2 to 50 do A[n]:= floor(Pi*A[n-1]) od:
seq(A[i], i=1..50); # Robert Israel, Feb 07 2016
MATHEMATICA
a[1] = Floor[Pi]; a[n_] := a[n] = Floor[a[n - 1]*Pi]; Array[a, 25] (* Robert G. Wilson v, Jan 18 2006 *)
NestList[Floor[Pi #]&, 3, 30] (* Harvey P. Dale, Mar 30 2012 *)
CROSSREFS
Cf. A085839.
Sequence in context: A052939 A225114 A085839 * A134915 A339064 A118365
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Jan 17 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jan 18 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 23:36 EDT 2024. Contains 375991 sequences. (Running on oeis4.)