OFFSET
1,1
COMMENTS
For any distinct primes p, q with q odd, contains all n such that n == 0 (mod p^2) and n == -1/2 (mod q^2). - Robert Israel, Oct 21 2016
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ n/(1 - 14/Pi^2 + 3*k/2 ) as n -> infinity, where k is the Feller-Tornier constant (A065474). - Robert Israel, Oct 21 2016
EXAMPLE
24 is in the sequence because 2^2 divides 24 and 7^2 divides 24*2 + 1.
MAPLE
select(n -> not numtheory:-issqrfree(n) and not numtheory:-issqrfree(2*n+1), [$1..2000]); # Robert Israel, Oct 21 2016
MATHEMATICA
fQ[n_] := ! SquareFreeQ[n] && ! SquareFreeQ[2 n + 1]; Select[Range[1000], fQ] (* Robert G. Wilson v, Oct 21 2016 *)
PROG
(PARI) isok(n) = !issquarefree(n) && ! issquarefree(2*n+1); \\ Michel Marcus, Oct 22 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Don Reble, Mar 05 2006
EXTENSIONS
Corrected by Zak Seidov, Oct 21 2016
STATUS
approved