login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115026
Limiting value of n under iteration of "sum of the digits raised to the power of the number of digits of n" (A101337).
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 5, 1, 370, 370, 370, 370, 370, 1, 4, 5, 8, 1, 4, 370, 370, 370, 1, 370, 9, 1, 1, 370, 370, 370, 370, 370, 370, 370, 370, 370, 4, 370, 1, 370, 370, 370, 370, 1, 370, 370, 370, 370, 370, 370, 370, 370, 370, 160, 370, 370, 370, 370, 370, 370
OFFSET
1,2
COMMENTS
Iterate A101337 starting at n until reaching a constant value (like 370) or a cycle (like 160, 217, 352, 160, ...). In the latter case, a(n) takes the smallest value in the cycle (e.g., a(59) = 160). Since k*9^k < 10^k for all k > 34, each number n is guaranteed to yield a smaller number a(n) if n > 10^34, so every number reaches a constant or a cycle under this sequence.
Conjecture: no term is greater than 370. - Harvey P. Dale, Jun 08 2022
EXAMPLE
a(89)=370 since:
89 (2 digits): 8^2 + 9^2 = 145,
145 (3 digits): 1^3 + 4^3 + 5^3 = 190,
190 (3 digits): 1^3 + 9^3 + 0^3 = 730,
730 (3 digits): 7^3 + 3^3 + 0^3 = 370,
370 (3 digits): 3^3 + 7^3 + 0^3 = 370, etc.
So a(89) = 370 since 370 is a fixed point of A101337.
MATHEMATICA
Table[Min[FindTransientRepeat[NestList[Total[IntegerDigits[#]^IntegerLength[#]]&, n, 20], 3][[2]]], {n, 70}] (* Harvey P. Dale, Jun 08 2022 *)
CROSSREFS
Cf. A101337.
Sequence in context: A355370 A326344 A340270 * A360075 A101337 A135208
KEYWORD
nonn,base
AUTHOR
Sergio Pimentel, Feb 24 2006
STATUS
approved