OFFSET
1,1
COMMENTS
If p=(2*10^n+1)/3 is prime then m=6*p is in the sequence because sigma(m)=sigma(6*p)=12*(2*10^n+4)/3=4*(2*10^n+4)=4* reversal(4*10^n+2)=4*reversal(6*(2*10^n+1)/3)=4*reversal(6*p) =4*reversal(m). Next term is greater than 5*10^8.
a(11) > 10^12. - Giovanni Resta, Oct 28 2012
EXAMPLE
492 is in the sequence because sigma(492)=sigma(4*3*41)=7*4*42
=4*294=4*reversal(492).
MATHEMATICA
Do[If[DivisorSigma[1, n]==4*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 500000000}]
CROSSREFS
KEYWORD
base,more,nonn
AUTHOR
Farideh Firoozbakht, Jan 28 2006
EXTENSIONS
a(7)-a(9) from Donovan Johnson, Dec 21 2008
a(10) from Giovanni Resta, Oct 28 2012
STATUS
approved