login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114854
a(n) = floor(n^(n/2)/n!!).
1
1, 1, 1, 2, 3, 4, 8, 10, 20, 26, 51, 64, 128, 163, 326, 416, 834, 1067, 2148, 2755, 5559, 7147, 14449, 18613, 37696, 48638, 98650, 127463, 258857, 334864, 680822, 881657, 1794294, 2325750, 4737361
OFFSET
1,4
COMMENTS
This sequence is a second approximation of a double factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 2, 4.
FORMULA
a(n) = floor(n^(n/2)/n!!). a(n) = floor(sqrt(A000312(n))/A006882(n)).
EXAMPLE
a(10) = floor((10^5)/3840) = floor(26.0416667) = 26.
a(11) = floor((11^5.5)/10395) = floor(51.3848715) = 51.
MAPLE
A114854 := proc(n)
n^(n/2)/doublefactorial(n) ;
floor(%) ;
end proc:
seq(A114854(n), n=1..35) ; # R. J. Mathar, Jun 23 2014
MATHEMATICA
Table[Floor[n^(n/2)/n!!], {n, 40}] (* Harvey P. Dale, Apr 04 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 20 2006
STATUS
approved