|
|
A114740
|
|
Smallest prime == 2n-1 (mod composite(2n-1)), or 0 if impossible.
|
|
0
|
|
|
5, 3, 5, 7, 41, 11, 13, 0, 17, 19, 0, 23, 101, 67, 29, 31, 131, 137, 37, 151, 41, 43, 109, 47, 463, 0, 53, 0, 137, 59, 61, 0, 0, 67, 163, 71, 73, 0, 0, 79, 0, 83, 317, 677, 89, 457, 0, 347, 97, 0, 101, 103, 0, 107, 109, 257, 113, 419, 271, 431, 439, 1733, 617, 127, 467, 131
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..66.
|
|
EXAMPLE
|
a(8)=0 because the 15th composite is 30 and no prime is congruent to 15 (mod 30).
|
|
MATHEMATICA
|
f[n_] := Block[{k = 1, m = FixedPoint[2n + PrimePi[ # ] &, 2n - 1]}, While[k < 100000 && Mod[Prime[k], m] != 2n - 1, k++ ]; If[k == 100000, 0, Prime[k]]]; Table[ f[n], {n, 67}] (* Robert G. Wilson v *)
|
|
CROSSREFS
|
Sequence in context: A131925 A128010 A185046 * A330523 A361546 A128008
Adjacent sequences: A114737 A114738 A114739 * A114741 A114742 A114743
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amarnath Murthy, Nov 15 2005
|
|
EXTENSIONS
|
Corrected and extended by Robert G. Wilson v, Nov 17 2005
|
|
STATUS
|
approved
|
|
|
|