The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114654 Discriminant of the polynomial x^n + x + 1. 0
 1, -3, -31, 229, 3381, -43531, -870199, 15953673, 404197705, -9612579511, -295311670611, 8630788777645, 311791207040509, -10809131718965763, -449005897206417391, 18008850183328692241, 845687005960046315793, -38519167813410200811247 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Except for the sign, the sequence alternates between the sum and difference of consecutive terms of A000312. x^2+x+1 divides x^n+x+1 for n=2 (mod 3). REFERENCES Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257.  Mathematical Reviews, MR2312537.  Zentralblatt MATH, Zbl 1133.11012. LINKS FORMULA for n>1, a(n) = (n^n + (-1)^(n-1) * (n-1)^(n-1)) * (-1)^floor(n/2). a(n) = (Cos[Pi n/2]+Sin[Pi n/2])(n^n)+(Cos[Pi(n+1)/2]+Sin[Pi(n+1)/2])(n+1)^(n+1). - Artur Jasinski, Oct 12 2007 MATHEMATICA Table[Discriminant[x^n + x + 1, x], {n, 0, 100}] (* Artur Jasinski, Oct 12 2007 *) PROG (PARI) a(n) = poldisc(x^n+x+1); \\ Michel Marcus, Aug 28 2020 CROSSREFS Cf. A000312 (n^n), A007781 (n^n - (n-1)^(n-1)), A056788 (n^n + (n-1)^(n-1)), A086797 (discriminant of the polynomial x^n-x-1). Sequence in context: A197746 A342260 A121147 * A198151 A197231 A334980 Adjacent sequences:  A114651 A114652 A114653 * A114655 A114656 A114657 KEYWORD sign AUTHOR T. D. Noe, Dec 21 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 16:48 EDT 2021. Contains 343898 sequences. (Running on oeis4.)