login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114654
Discriminant of the polynomial x^n + x + 1.
0
1, -3, -31, 229, 3381, -43531, -870199, 15953673, 404197705, -9612579511, -295311670611, 8630788777645, 311791207040509, -10809131718965763, -449005897206417391, 18008850183328692241, 845687005960046315793, -38519167813410200811247
OFFSET
1,2
COMMENTS
Except for the sign, the sequence alternates between the sum and difference of consecutive terms of A000312. x^2+x+1 divides x^n+x+1 for n=2 (mod 3).
REFERENCES
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
FORMULA
for n>1, a(n) = (n^n + (-1)^(n-1) * (n-1)^(n-1)) * (-1)^floor(n/2).
a(n) = (Cos[Pi n/2]+Sin[Pi n/2])(n^n)+(Cos[Pi(n+1)/2]+Sin[Pi(n+1)/2])(n+1)^(n+1). - Artur Jasinski, Oct 12 2007
MATHEMATICA
Table[Discriminant[x^n + x + 1, x], {n, 0, 100}] (* Artur Jasinski, Oct 12 2007 *)
PROG
(PARI) a(n) = poldisc(x^n+x+1); \\ Michel Marcus, Aug 28 2020
CROSSREFS
Cf. A000312 (n^n), A007781 (n^n - (n-1)^(n-1)), A056788 (n^n + (n-1)^(n-1)), A086797 (discriminant of the polynomial x^n-x-1).
Sequence in context: A197746 A342260 A121147 * A198151 A197231 A334980
KEYWORD
sign
AUTHOR
T. D. Noe, Dec 21 2005
STATUS
approved