Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #95 Feb 17 2023 22:33:16
%S 2,0,1,2,0,1,0,3,0,1,2,0,4,0,1,0,5,0,5,0,1,2,0,9,0,6,0,1,0,7,0,14,0,7,
%T 0,1,2,0,16,0,20,0,8,0,1,0,9,0,30,0,27,0,9,0,1,2,0,25,0,50,0,35,0,10,
%U 0,1,0,11,0,55,0,77,0,44,0,11,0,1,2,0,36,0,105,0,112,0,54,0,12,0,1,0
%N Triangle of coefficients of the Lucas (w-)polynomials.
%C Unsigned version of A108045.
%C The row reversed triangle is A162514. - _Paolo Bonzini_, Jun 23 2016
%H G. C. Greubel, <a href="/A114525/b114525.txt">Rows n = 0..100 of triangle, flattened</a>
%H B. Johnson, <a href="https://web.archive.org/web/20201130211206/http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf">Fibonacci numbers and matrices</a>, 2009.
%H Jong Hyun Kim, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Kim/kim18.html">Hadamard products and tilings</a>, JIS 12 (2009) 09.7.4.
%H M. Pétréolle, <a href="http://arxiv.org/abs/1403.1130">Characterization of Cyclically Fully commutative elements in finite and affine Coxeter Groups</a>, arXiv preprint arXiv:1403.1130 [math.GR], 2014.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciPolynomial.html">Fibonacci Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LucasPolynomial.html">Lucas Polynomial</a>
%F From _Peter Bala_, Mar 18 2015
%F The Lucas polynomials L(n,x) satisfy the recurrence L(n+1,x) = x*L(n,x) + L(n-1,x) with L(0,x) = 2 and L(1,x) = x.
%F O.g.f.: Sum_{n >= 0} L(n,x)*t^n = (2 - x*t)/(1 - t^2 - x*t) = 2 + x*t + (x^2 + 2)*t^2 + (3*x + x^3)*t^3 + ....
%F L(n,x) = trace( [ x, 1; 1, 0 ]^n ).
%F exp( Sum_{n >= 1} L(n,x)*t^n/n ) = Sum_{n >= 0} F(n+1,x)*t^n, where F(n,x) denotes the n-th Fibonacci polynomial. (see Appendix A3 in Johnson).
%F exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*t^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)*F(n+3,x)*t^n.
%F exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n.
%F L(n,1) = Lucas(n) = A000032(n); L(n,4) = Lucas(3*n) = A014448(n); L(n,11) = Lucas(5*n) = A001946(n); L(n,29) = Lucas(7*n) = A087281(n); L(n,76) = Lucas(9*n) = A087287(n); L(n,199) = Lucas(11*n) = A089772(n). The general result is L(n,Lucas(2*k + 1)) = Lucas((2*k + 1)*n). (End)
%F From _Jeremy Dover_, Jun 10 2016: (Start)
%F Read as a triangle T(n,k), n >= 0, n >= k >= 0, T(n,k) = (Binomial((n+k)/2,k) + Binomial((n+k-2)/2,k))*(1+(-1)^(n-k))/2.
%F T(n,k) = A046854(n-1,k-1) + A046854(n-1,k) + A046854(n-2,k) for even n+k with n+k > 0, assuming A046854(n,k) = 0 for n < 0, k < 0, k > n.
%F T(n,k) is the number of binary strings of length n with exactly k pairs of consecutive 0's and no pair of consecutive 1's, where the first and last bits are considered consecutive. (End)
%F From _Peter Bala_, Sep 03 2022: (Start)
%F L(n,x) = 2*(i)^n*T(n,-i*x/2), where i = sqrt(-1) and T(n,x) is the n-th Chebyshev polynomial of the first kind.
%F d/dx(L(n,x)) = n*F(n,x), where F(n,x) denotes the n-th Fibonacci polynomial.
%F Let P_n(x,y) = (L(n,x) - L(n,y))/(x - y). Then {P_n(x,y): n >= 1} is a fourth-order linear divisibility sequence of polynomials in the ring Z[x,y]: if m divides n in Z then P_m(x,y) divides P_n(x,y) in Z[x,y].
%F P_n(1,1) = A045925(n); P_n(1,4) = A273622; P_n(2,2) = A093967(n).
%F L(2*n,x)^2 - L(2*n-1,x)*L(2*n+1,x) = x^2 + 4 for n >= 1.
%F Sum_{n >= 1} L(2*n,x)/( L(2*n-1,x) * L(2*n+1,x) ) = 1/x^2 and
%F Sum_{n >= 1} (-1)^(n+1)/( L(2*n,x) + x^2/L(2*n,x) ) = 1/(x^2 + 4), both valid for all nonzero real x. (End)
%F From _Peter Bala_, Nov 18 2022: (Start)
%F L(n,x) = Sum_{k = 0..floor(n/2)} (n/(n-k))*binomial(n-k,k)*x^(n-2*k) for n >= 1.
%F For odd m, L(n, L(m,x)) = L(n*m, x).
%F For integral x, the sequence {u(n)} := {L(n,x)} satisfies the Gauss congruences: u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all positive integers m and r and all primes p.
%F Let p be an odd prime and let 0 <= k <= p - 1. Let alpha_k = the p-adic limit_{n -> oo} L(p^n,k). Then alpha_k is a well-defined p-adic-integer and the polynomial L(p,x) - x of degree p factorizes as L(p,x) - x = Product_{k = 0..p-1} (x - alpha_k). For example, L(5,x) - x = x^5 + 5*x^3 + 4*x = x*(x - A269591)*(x - A210850)*(x - A210851)*(x - A269592) in the ring of 5-adic integers. (End)
%F The formula for L(n,x) given in the first line of the preceding section, with L(0, x) = 2, is rewritten L(n, x) = Sum_{k = 0..floor(n/2)} A034807(n, k)*x^(n - 2*k). See the formula by Alexander Elkins in A034807. - _Wolfdieter Lang_, Feb 10 2023
%e 2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5, ... give triangle
%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...
%e 0: 2
%e 1: 0 1
%e 2: 2 0 1
%e 3: 0 3 0 1
%e 4: 2 0 4 0 1
%e 5: 0 5 0 5 0 1
%e 6: 2 0 9 0 6 0 1
%e 7: 0 7 0 14 0 7 0 1
%e 8: 2 0 16 0 20 0 8 0 1
%e 9: 0 9 0 30 0 27 0 9 0 1
%e 10: 2 0 25 0 50 0 35 0 10 0 1
%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...
%e .... reformatted by _Wolfdieter Lang_, Feb 10 2023
%p Lucas := proc(n,x)
%p option remember;
%p if n=0 then
%p 2;
%p elif n =1 then
%p x ;
%p else
%p x*procname(n-1,x)+procname(n-2,x) ;
%p end if;
%p end proc:
%p A114525 := proc(n,k)
%p coeftayl(Lucas(n,x),x=0,k) ;
%p end proc:
%p seq(seq(A114525(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Aug 16 2019
%t row[n_] := CoefficientList[LucasL[n, x], x];
%t Table[row[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Aug 11 2018 *)
%Y Cf. A108045 (signed version).
%Y Cf. A034807, A162514.
%Y Cf. Sequences L(n,x): A000032(x = 1), A002203 (x = 2), A006497 (x = 3), A014448 (x = 4), A087130 (x = 5), A085447 (x = 6), A086902 (x = 7), A086594 (x = 8), A087798 (x = 9), A086927 (x = 10), A001946 (x = 11), A086928 (x = 12), A088316 (x = 13), A090300 (x = 14), A090301 (x = 15), A090305 (x = 16), A090306 (x = 17), A090307 (x = 18), A090308 (x = 19), A090309 (x = 20), A090310 (x = 21), A090313 (x = 22), A090314 (x = 23), A090316 (x = 24), A087281 (x = 29), A087287 (x = 76), A089772 (x = 199).
%K nonn,tabl,easy
%O 0,1
%A _Eric W. Weisstein_, Dec 06 2005