

A114482


Let S(1)=1, S(2)=10; S(2n)=concatenation of S(2n1), S(2n2) and 0; and S(2n+1)=concatenation of S(2n), S(2n) and 0. Sequence gives S(infinity).


3



1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Number of terms in S(n) is A062318(n).
Interpreting S(n) in binary and converting to decimal gives 1,2,20,164,84296,43159880,5792821120672400,...,.


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

S(3) = {1,0,1,0,0}, S(4) = {1,0,1,0,0,1,0,0}, S(5) = {1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0}, ...


MATHEMATICA

a[1] = {1}; a[2] = {1, 0}; a[n_] := a[n] = If[EvenQ[n], Join[a[n  1], a[n  2], {0}] // Flatten, Join[a[n  1], a[n  1], {0}] // Flatten]; a[8] (* Robert G. Wilson v *)


CROSSREFS

Cf. A114483, A062318, A112361.
Sequence in context: A243148 A089495 A173857 * A186518 A127829 A127831
Adjacent sequences: A114479 A114480 A114481 * A114483 A114484 A114485


KEYWORD

easy,nonn


AUTHOR

Leroy Quet, Nov 30 2005


EXTENSIONS

More terms from Robert G. Wilson v, Jan 01 2006
Edited by N. J. A. Sloane, Jan 03 2006


STATUS

approved



