login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114482 Let S(1)=1, S(2)=10; S(2n)=concatenation of S(2n-1), S(2n-2) and 0; and S(2n+1)=concatenation of S(2n), S(2n) and 0. Sequence gives S(infinity). 3
1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Number of terms in S(n) is A062318(n).

Interpreting S(n) in binary and converting to decimal gives 1,2,20,164,84296,43159880,5792821120672400,...,.

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

S(3) = {1,0,1,0,0}, S(4) = {1,0,1,0,0,1,0,0}, S(5) = {1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0}, ...

MATHEMATICA

a[1] = {1}; a[2] = {1, 0}; a[n_] := a[n] = If[EvenQ[n], Join[a[n - 1], a[n - 2], {0}] // Flatten, Join[a[n - 1], a[n - 1], {0}] // Flatten]; a[8] (* Robert G. Wilson v *)

CROSSREFS

Cf. A114483, A062318, A112361.

Sequence in context: A243148 A089495 A173857 * A186518 A127829 A127831

Adjacent sequences:  A114479 A114480 A114481 * A114483 A114484 A114485

KEYWORD

easy,nonn

AUTHOR

Leroy Quet, Nov 30 2005

EXTENSIONS

More terms from Robert G. Wilson v, Jan 01 2006

Edited by N. J. A. Sloane, Jan 03 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 04:43 EST 2019. Contains 329853 sequences. (Running on oeis4.)