login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114482
Let S(1)=1, S(2)=10; S(2n)=concatenation of S(2n-1), S(2n-2) and 0; and S(2n+1)=concatenation of S(2n), S(2n) and 0. Sequence gives S(infinity).
3
1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0
OFFSET
1,1
COMMENTS
Number of terms in S(n) is A062318(n).
Interpreting S(n) in binary and converting to decimal gives 1,2,20,164,84296,43159880,5792821120672400,...,.
EXAMPLE
S(3) = {1,0,1,0,0}, S(4) = {1,0,1,0,0,1,0,0}, S(5) = {1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0}, ...
MATHEMATICA
a[1] = {1}; a[2] = {1, 0}; a[n_] := a[n] = If[EvenQ[n], Join[a[n - 1], a[n - 2], {0}] // Flatten, Join[a[n - 1], a[n - 1], {0}] // Flatten]; a[8] (* Robert G. Wilson v *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Nov 30 2005
EXTENSIONS
More terms from Robert G. Wilson v, Jan 01 2006
Edited by N. J. A. Sloane, Jan 03 2006
STATUS
approved