login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114455
Numbers k such that the k-th hexagonal number is a 4-almost prime.
1
12, 23, 25, 26, 27, 30, 33, 35, 39, 42, 45, 46, 52, 53, 58, 59, 62, 65, 66, 70, 75, 76, 83, 85, 93, 94, 99, 111, 114, 117, 118, 119, 131, 133, 134, 137, 145, 146, 147, 154, 155, 161, 163, 167, 173, 174, 175, 178, 179, 183, 190, 193, 195, 202, 206, 209, 214, 219, 222, 226, 231, 233, 235, 237, 239
OFFSET
1,1
COMMENTS
There are no prime hexagonal numbers. The k-th hexagonal number A000384(k) = k*(2*k-1) is semiprime iff both k and 2*k-1 are primes iff A000384(k) is an element of A001358 iff k is an element of A005382.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Eric Weisstein's World of Mathematics, Almost Prime.
Eric Weisstein's World of Mathematics, Hexagonal Number.
FORMULA
Numbers k such that hexagonal number A000384(k) is an element of A014613.
Numbers k such that A001222(A000384(k)) = 4.
Numbers k such that A001222(k*(2*k-1)) = 4.
EXAMPLE
a(1) = 12 because HexagonalNumber(12) = H(12) = 12*(2*12-1) = 276 = 2^2 * 3 * 23 is a 4-almost prime.
a(2) = 23 because H(23) = 23*(2*23-1) = 1035 = 3^2 * 5 * 23 is a 4-almost prime.
a(3) = 25 because H(25) = 25*(2*25-1) = 1225 = 5^2 * 7^2 is a 4-almost prime.
MATHEMATICA
Select[Range[250], PrimeOmega[#(2#-1)]==4&] (* Harvey P. Dale, Feb 18 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 14 2006
EXTENSIONS
40 removed by R. J. Mathar, Dec 22 2010
STATUS
approved