login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Smallest solution to 10^m == 1 (mod m) having the prime divisor A066364(n).
5

%I #19 Apr 28 2017 13:01:56

%S 3,111,13203,20439,1997001,22494039,116226009,761157,278522253,

%T 206613747,17677747557,835525881,12933400720959,228717562653,

%U 5465090439,13095850041,431138536893,4734551277,58199580096201,59875330325409,228520359,3003003,257494085001,1029221499627,136635497220969

%N Smallest solution to 10^m == 1 (mod m) having the prime divisor A066364(n).

%H Ray Chandler, <a href="/A114207/b114207.txt">Table of n, a(n) for n = 1..2060</a> (first 501 terms from Max Alekseyev)

%F a(n)=m(p), where p=A066364(n) and m(p)=lcm(p, ord_p(10), m(q)) with q going over all prime divisors of ord_p(10).

%e a(6)=m(5477)=22494039 since it is the smallest m such that 10^m == 1 (mod m) and 5477|m.

%o (PARI) { m(p) = my(f,l,q); f=factorint(p)[,1]; l=p; for(i=1,length(f),q=znorder(Mod(10,f[i])); l=lcm(l,q); l=lcm(l,m(q)) ); l }

%Y Cf. A066364.

%K nonn

%O 1,1

%A _Max Alekseyev_, Nov 17 2005