

A113927


a(1)=1, and recursively a(n+1) is the smallest prime p of the form p = 2*a(n) + 5^k for some k>0.


0



1, 7, 19, 43, 211, 547, 4219, 8443, 17011, 34147, 71419, 142963, 1220989051, 3662681227, 19080811690579, 38161623381163, 76324467465451, 152648936884027, 305299094471179, 4656613483675581520483
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Note that last digits cycle 7, 9, 3, 1; 7, 9, 3, 1. Note that the exponent k of 5^k is always odd. This follows from taking this sequence mod 6.
Since the first prime value a(2) = 7 == 1 mod 6, all values a(n) thereafter are primes of the form 6*d+1. Hence a(n+1) = [2*(6*d+1) + 5^2] mod 6 == 12*d + 2 + 1 == 3 mod 6 and would be divisible by 3; a(n+1) = [2*(6*d+1) + 5^4] mod 6 == 12*d + 2 + 1 == 3 mod 6 and would be divisible by 3; and so for all even exponents.
In general, the (b,c,d) Jasinskilike positive power sequence is defined as follows: a(1) = b, a(n+1) = the least prime p such that p = c*a(n) + d^k for positive integer k. The (b,c,d) Jasinskilike nonnegative power sequence is defined: a(1) = b, a(n+1) = the least prime p such that p = c*a(n) + d^k for integer k. In this notation, A113824 is the (1,2,2) Jasinskilike nonnegative power sequence. A113914 is the (1,2,3) Jasinskilike positive power sequence, and this here the (1,2,5) Jasinskilike power sequence.


LINKS

Table of n, a(n) for n=1..20.


EXAMPLE

a(1) = 1 by definition.
a(2) = 2*1 + 5^1 = 7.
a(3) = 2*7 + 5^1 = 19.
a(4) = 2*19 + 5^1 = 43.
a(5) = 2*43 + 5^3 = 211.
a(6) = 2*211 + 5^3 = 547.
a(7) = 2*547 + 5^5 = 4219.
a(13) = 2*142963 + 5^13 = 1220989051.
a(20) = 2*305299094471179 + 5^31 = 4656613483675581520483, where 31 is a record exponent.
a(22) = 2*9313226967351163119091 + 5^45 = 28421709449030461369547296941307 and 45 is the new record exponent.


CROSSREFS

Cf. A073924, A080355, A080567, A099969, A099970, A099971, A099972, A113824, A113914.
Sequence in context: A155351 A155430 A155247 * A155399 A330854 A268926
Adjacent sequences: A113924 A113925 A113926 * A113928 A113929 A113930


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Jan 30 2006


STATUS

approved



