The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113914 (1,2,3) Jasinski-like positive power sequence. 1
 1, 5, 13, 29, 61, 131, 271, 569, 1381, 2789, 5581, 11171, 22369, 44741, 89491, 185543, 373273, 766229, 1532701, 3065411, 6130849, 12261701, 24700549, 49401101, 98802211, 202387391, 409557751, 819116231, 1638232471, 3276464969 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In general, the (b,c,d) Jasinski-like positive power sequence is defined as follows: a(1) = b, a(n+1) = the least prime p such that p = c*a(n) + d^k for positive integer k. The (b,c,d) Jasinski-like nonnegative power sequence is defined: a(1) = b, a(n+1) = the least prime p such that p = c*a(n) + d^k for integer k. In this notation, A113824 is the (1,2,2) Jasinski-like nonnegative power sequence. The first differences of such sequences are powers of d, with no closed-form known upper bound. LINKS Table of n, a(n) for n=1..30. FORMULA a(1) = 1, a(n+1) = the least prime p such that p = 2*a(n) + 3^k for integer k>0. EXAMPLE a(1) = 1 by definition. a(2) = 2*1 + 3^1 = 5. a(3) = 2*5 + 3^1 = 13. a(4) = 2*13 + 3^1 = 29. a(5) = 2*29 + 3^1 = 61. a(6) = 2*61 + 3^2 = 271. a(7) = 2*271 + 3^2 = 569. a(32) = 2*6553461379 + 3^49 = 239299329230630636512841. Here 49 is a record value for the exponent. CROSSREFS Cf. A073924, A080355, A080567, A099969, A099970, A099971, A099972, A113824. Sequence in context: A036982 A029580 A344920 * A050415 A099970 A073857 Adjacent sequences: A113911 A113912 A113913 * A113915 A113916 A113917 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Jan 29 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 07:38 EDT 2024. Contains 371782 sequences. (Running on oeis4.)