login
A113793
Triangle read by rows: T(n,m) = phi(n - m + 1) * phi(m), n >= 1, m >= 1.
0
1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 4, 2, 6, 2, 8, 4, 8, 2, 6, 4, 6, 4, 8, 8, 4, 6, 4, 6, 4, 12, 4, 16, 4, 12, 4, 6, 4, 6, 8, 12, 8, 8, 12, 8, 6, 4, 10, 4, 12, 8, 24, 4, 24, 8, 12, 4, 10, 4, 10, 8, 12, 16, 12, 12, 16, 12, 8, 10, 4, 12, 4, 20, 8, 24, 8, 36, 8, 24, 8, 20, 4, 12
OFFSET
1,4
FORMULA
T(n,m) = A000010(m)*A000010(n-m+1), n >= 1, m >= 1. - Omar E. Pol, Jan 14 2025
EXAMPLE
{1},
{1, 1},
{2, 1, 2},
{2, 2, 2, 2},
{4, 2, 4, 2, 4},
{2, 4, 4, 4, 4, 2},
{6, 2, 8, 4, 8, 2, 6},
{4, 6, 4, 8, 8, 4, 6, 4},
{6, 4, 12, 4, 16, 4, 12, 4, 6},
{4, 6, 8, 12, 8, 8, 12, 8, 6, 4},
{10, 4, 12, 8, 24, 4, 24, 8, 12, 4, 10}
MATHEMATICA
T[n_, m_] = EulerPhi[n - m + 1]*EulerPhi[m + 1]; Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
CROSSREFS
Column 1 and leading diagonal give A000010.
Middle diagonal gives A127473.
Row sums give A065093.
Sequence in context: A025859 A031281 A203181 * A289499 A215904 A083552
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Name corrected and more terms added by Omar E. Pol, Jan 14 2025
STATUS
approved