Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jun 03 2019 23:51:29
%S 1,3,11,51,291,1955,14947,127203,1188067,12063459,132253411,
%T 1557096163,19600652003,262792435427,3740012173027,56328120653539,
%U 895281283880675,14978332471744227,263154416079230691,4844530248867534563
%N Column 1 of triangle A113711, in which row n forms a polynomial in y=2*k that generates diagonal n as k=0,1,2,... for n >= 0.
%F a(n) = Sum_{j=0..n} A113711(n,j)*2^j.
%o (PARI) getmnk(m, n, k) = {if (n<k || k<0, return (0)); if (k==0, return (1)); if (! m[n, k], if (n==k, m[n,k] = 1, m[n, k] = sum(j=0, n-k, getmnk(m, n-k, j)*(2*k)^j))); m[n,k];}
%o lista(nn) = {my(m=matrix(nn, nn)); for(n=1, nn, for (k=1, n, m[n, k] = getmnk(m, n, k););); vector(nn, n, m[n, 1]);} \\ _Michel Marcus_, Jun 03 2019
%Y Cf. A113711, A113713 (column 2), A113714 (column 3), A113715 (row sums).
%K nonn
%O 0,2
%A _Paul D. Hanna_, Nov 08 2005