login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.
1

%I #8 Nov 21 2013 12:48:46

%S 1,55,9217,280483,3378745,23803711,118513705,462945547,1512003793,

%T 4303999495,10987654321,25678050355,55776799177,113924725903,

%U 220792014745,408951042331,728121033505,1252121211607,2087920281313

%N 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.

%C 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 10*x^9 is the derivative of 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 = (x^11 - 1)/(x-1).

%F a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.

%F G.f.: (1+x (45+x (8712+x (190668+x (982290+x (1543254+x (784080+x (116268+x (3477+5 x)))))))))/(x-1)^10 [From Harvey P. Dale, Mar 14 2011]

%e a(5) = 1 + 2*5 + 3*5^2 + 4*5^3 + 5*5^4 + 6*5^5 + 7*5^6 + 8*5^7 + 9*5^8 + 10*5^9 = 23803711 is prime.

%e a(30) = 1 + 2*30 + 3*30^2 + 4*30^3 + 5*30^4 + 6*30^5 + 7*30^6 + 8*30^7 + 9*30^8 + 10*30^9 = 202915112960761 is prime.

%t With[{eq=Total[Range[10](n^Range[0,9])]},Table[eq,{n,0,20}]] (* _Harvey P. Dale_, Mar 14 2011 *)

%Y Cf. A000012, A005408, A056109, A056578, A056579.

%K easy,nonn

%O 0,2

%A _Jonathan Vos Post_, Jan 14 2006