login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113632
1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.
1
1, 55, 9217, 280483, 3378745, 23803711, 118513705, 462945547, 1512003793, 4303999495, 10987654321, 25678050355, 55776799177, 113924725903, 220792014745, 408951042331, 728121033505, 1252121211607, 2087920281313
OFFSET
0,2
COMMENTS
1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 10*x^9 is the derivative of 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 = (x^11 - 1)/(x-1).
FORMULA
a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.
G.f.: (1+x (45+x (8712+x (190668+x (982290+x (1543254+x (784080+x (116268+x (3477+5 x)))))))))/(x-1)^10 [From Harvey P. Dale, Mar 14 2011]
EXAMPLE
a(5) = 1 + 2*5 + 3*5^2 + 4*5^3 + 5*5^4 + 6*5^5 + 7*5^6 + 8*5^7 + 9*5^8 + 10*5^9 = 23803711 is prime.
a(30) = 1 + 2*30 + 3*30^2 + 4*30^3 + 5*30^4 + 6*30^5 + 7*30^6 + 8*30^7 + 9*30^8 + 10*30^9 = 202915112960761 is prime.
MATHEMATICA
With[{eq=Total[Range[10](n^Range[0, 9])]}, Table[eq, {n, 0, 20}]] (* Harvey P. Dale, Mar 14 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 14 2006
STATUS
approved