Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 05 2024 14:27:15
%S 1,3,12,50,212,905,3872,16576,70968,303832,1300737,5568473,23838453,
%T 102051167,436874885,1870233780,8006350999,34274673894,146727674181,
%U 628131735844,2688991567300,11511399994065,49279563214531
%N Second row of A113439.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9, -28, 38, -20, 1).
%F a(n) = A113439(4*n+1).
%F a(n) = 9*a(n-1) - 28*a(n-2) + 38*a(n-3) - 20*a(n-4) + a(n-5).
%F G.f.: -(1-6*x+13*x^2-12*x^3+4*x^4)/(-1+9*x-28*x^2+38*x^3-20*x^4+x^5).
%t LinearRecurrence[{9,-28,38,-20,1},{1,3,12,50,212},30] (* _Harvey P. Dale_, Apr 06 2013 *)
%t CoefficientList[Series[-(1 - 6*x + 13*x^2 - 12*x^3 + 4*x^4)/(-1 + 9*x - 28*x^2 + 38*x^3 - 20*x^4 + x^5), {x,0,50}], x] (* _G. C. Greubel_, Mar 11 2017 *)
%o (PARI) x='x+O('x^50); Vec(-(1-6*x+13*x^2-12*x^3+4*x^4)/(-1+9*x-28*x^2+38*x^3-20*x^4+x^5)) \\ _G. C. Greubel_, Mar 11 2017
%Y Cf. A113439.
%K nonn,easy
%O 0,2
%A _Floor van Lamoen_, Nov 04 2005