login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First row of A113439.
1

%I #11 Jul 20 2024 19:14:41

%S 1,2,8,34,146,627,2689,11521,49337,211233,904306,3871305,16572812,

%T 70947073,303719624,1300203634,5566087073,23828058969,102006385362,

%U 436682772844,1869410868456,8002827727921,34259590954322

%N First row of A113439.

%H G. C. Greubel, <a href="/A113440/b113440.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-28,38,-20,1).

%F a(n) = A113439(4*n).

%F a(n) = 9*a(n-1) - 28*a(n-2) + 38*a(n-3) - 20*a(n-4) + a(n-5).

%F G.f.: -(1-7*x+18*x^2-20*x^3+8*x^4)/(-1+9*x-28*x^2+38*x^3-20*x^4+x^5).

%t CoefficientList[Series[-(1 - 7*x + 18*x^2 - 20*x^3 + 8*x^4)/(-1 + 9*x - 28*x^2 + 38*x^3 - 20*x^4 + x^5), {x,0,50}], x] (* _G. C. Greubel_, Mar 11 2017 *)

%t LinearRecurrence[{9,-28,38,-20,1},{1,2,8,34,146},30] (* _Harvey P. Dale_, Jul 20 2024 *)

%o (PARI) x='x+O('x^50); Vec(-(1-7*x+18*x^2-20*x^3+8*x^4)/(-1+9*x-28*x^2+38*x^3-20*x^4+x^5)) \\ _G. C. Greubel_, Mar 11 2017

%Y Cf. A113439.

%K nonn,easy

%O 0,2

%A _Floor van Lamoen_, Nov 04 2005