OFFSET
1,1
COMMENTS
For primes less than 10^6, the density of these primes is near 0.6075.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1600
Nadav Kohen, Uniform Recurrence in the Motzkin Numbers and Related Sequences mod p, arXiv:2403.00149 [math.CO], 2024.
Narad Rampersad and Jeffrey Shallit, Congruence properties of combinatorial sequences via Walnut and the Rowland-Yassawi-Zeilberger automaton, arXiv:2110.06244 [math.CO], 2021.
MATHEMATICA
nn=1000; a=b=1; t=Join[{1}, Table[c=((2n-1)b+3(n-1)a)/n; a=b; b=c; c, {n, 2, nn}]]; pLst={}; Do[p=Prime[n]; k=1; While[k<p && Mod[t[[k]], p]>0, k++ ]; If[k==p, AppendTo[pLst, p]], {n, PrimePi[nn]}]; pLst
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 24 2005
STATUS
approved