login
A113302
Number of k such that prime(n) divides T(k), the central trinomial coefficient A002426(k), with 0<k<prime(n).
5
0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 4, 2, 3, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 3, 4, 0, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 3, 0, 0, 4, 2, 2, 4, 0, 0, 3, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 6, 2, 2, 0, 0, 2, 0, 4, 2, 0
OFFSET
1,7
COMMENTS
For primes less than 10^6, a(n) <= 10. Is 10 the largest possible value? When a(n)=0, prime(n) is in A113305. When a(n)>0, prime(n) is in A113304.
MATHEMATICA
nn=1000; a=b=1; t=Join[{1}, Table[c=((2n-1)b+3(n-1)a)/n; a=b; b=c; c, {n, 2, nn}]]; Table[p=Prime[i]; cnt=0; Do[If[Mod[t[[j]], p]==0, cnt++ ], {j, p}]; cnt, {i, PrimePi[nn]}]
CROSSREFS
Cf. A113303 (least k such that prime(n) divides T(k)).
Sequence in context: A328828 A276009 A328842 * A292946 A196078 A287086
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 24 2005
STATUS
approved