

A113209


Decimal expansion of log(5)/log(3).


2



1, 4, 6, 4, 9, 7, 3, 5, 2, 0, 7, 1, 7, 9, 2, 7, 1, 6, 7, 1, 9, 7, 0, 4, 0, 4, 0, 7, 6, 7, 8, 6, 4, 0, 3, 9, 6, 3, 0, 7, 9, 3, 2, 3, 6, 6, 6, 6, 6, 0, 4, 9, 6, 8, 9, 0, 5, 2, 8, 9, 0, 3, 9, 4, 7, 9, 5, 4, 9, 2, 2, 7, 6, 1, 9, 1, 0, 2, 5, 8, 2, 3, 6, 5, 5, 5, 9, 3, 1, 1, 3, 7, 5, 9, 5, 2, 9, 4, 9, 1, 4, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Capacity dimension of the box fractal.
Hausdorff dimension of the graph of Bourbaki's function. McCollum: We examine Bourbaki's function, an easilyconstructed continuous but nowheredifferentiable function, and explore properties including functional identities, the antiderivative, and the Hausdorff dimension of the graph.  Jonathan Vos Post, Sep 15 2010


LINKS

Table of n, a(n) for n=1..102.
James McCollum, Properties of Bourbaki's Function, Sep 15, 2010.
Eric Weisstein's World of Mathematics, Box Fractal
Index entries for transcendental numbers


FORMULA

Equals A016628 divided by A002391.  R. J. Mathar, Sep 08 2013


EXAMPLE

1.4649735207179...


MAPLE

Digits:=100: evalf(log(5)/log(3)); # Wesley Ivan Hurt, Jul 07 2014


MATHEMATICA

RealDigits[Log[3, 5], 10, 100][[1]] (* Alonso del Arte, Jul 07 2014 *)


PROG

(PARI) log(5)/log(3) \\ Charles R Greathouse IV, May 15 2019


CROSSREFS

Cf. A152914.
Sequence in context: A130762 A054002 A010300 * A088739 A088740 A088738
Adjacent sequences: A113206 A113207 A113208 * A113210 A113211 A113212


KEYWORD

nonn,cons,easy


AUTHOR

Eric W. Weisstein, Oct 17 2005


STATUS

approved



