Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Apr 09 2014 10:16:31
%S 1,1,1,1,1,4,1,1,1,11,1,24,1,29,61,1,1,76,1,451,421,199,1,1104,1,521,
%T 1,8149,1,83204,1,1,19801,3571,141961,146376,1,9349,135721,974611,1,
%U 10304396,1,2626999,6675901,64079,1,2435424,1,167761,6376021,47140601,1
%N a(n) = F(n)/product{p=primes} F(p^(m_{n,p})), where p^(m_{n,p}) is highest power of p dividing n, m= nonnegative integer and F(k) is the k-th Fibonacci number.
%C Every term of sequence is an integer.
%F F(n)/A113195(n)
%e 12 = 2^2 * 3^1, so a(12) = F(12)/ (F(2^2) * F(3^1)) = 144/(3*2) = 24.
%t b[t_]:=Fibonacci[First[t]^Last[t]] a[n_]:=Fibonacci[n]/Apply[Times, Map[b, FactorInteger[n]]] (Peuha)
%o (PARI) { for(n=1,100,f=factor(n);p=1;\ for(i=1,matsize(f)[1],p*=fibonacci(f[i,1]^f[i,2]));\ print1(fibonacci(n)/p,",")) } (Klasen)
%Y Cf. A113195.
%K nonn
%O 1,6
%A _Leroy Quet_, Oct 17 2005
%E More terms from Esa Peuha (esa.peuha(AT)helsinki.fi) and Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 26 2005