login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113196
a(n) = F(n)/product{p=primes} F(p^(m_{n,p})), where p^(m_{n,p}) is highest power of p dividing n, m= nonnegative integer and F(k) is the k-th Fibonacci number.
1
1, 1, 1, 1, 1, 4, 1, 1, 1, 11, 1, 24, 1, 29, 61, 1, 1, 76, 1, 451, 421, 199, 1, 1104, 1, 521, 1, 8149, 1, 83204, 1, 1, 19801, 3571, 141961, 146376, 1, 9349, 135721, 974611, 1, 10304396, 1, 2626999, 6675901, 64079, 1, 2435424, 1, 167761, 6376021, 47140601, 1
OFFSET
1,6
COMMENTS
Every term of sequence is an integer.
FORMULA
F(n)/A113195(n)
EXAMPLE
12 = 2^2 * 3^1, so a(12) = F(12)/ (F(2^2) * F(3^1)) = 144/(3*2) = 24.
MATHEMATICA
b[t_]:=Fibonacci[First[t]^Last[t]] a[n_]:=Fibonacci[n]/Apply[Times, Map[b, FactorInteger[n]]] (Peuha)
PROG
(PARI) { for(n=1, 100, f=factor(n); p=1; \ for(i=1, matsize(f)[1], p*=fibonacci(f[i, 1]^f[i, 2])); \ print1(fibonacci(n)/p, ", ")) } (Klasen)
CROSSREFS
Cf. A113195.
Sequence in context: A222639 A184729 A127707 * A037291 A222317 A063851
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 17 2005
EXTENSIONS
More terms from Esa Peuha (esa.peuha(AT)helsinki.fi) and Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 26 2005
STATUS
approved