login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113171 Short legs 'A' of exactly 7 primitive Pythagorean triangles. 1
660, 1092, 1140, 1155, 1260, 1320, 1365, 1380, 1428, 1540, 1560, 1740, 1785, 1820, 1860, 1980, 1995, 2184, 2220, 2340, 2380, 2415, 2436, 2460, 2508, 2580, 2604, 2660, 2805, 2820, 2856, 2860, 2940, 3003, 3036, 3060, 3108, 3120, 3135, 3180, 3192, 3220, 3300 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000

FORMULA

a^2+b^2=c^2

EXAMPLE

Examples of triples: 660.779.1021, 660.989.1189, 660.2989.3061, 660.4331.4381, 660.12091.12109, 660.27221.27229, 660.108899.108901

1092.1325.1717, 1092.1595.1933, 1092.6035.6133, 1092.8245.8317, 1092.33115.33133, 1092.74525.74533, 1092.298115.298117

MATHEMATICA

PyphagoreanAs[a_]:=(q={}; k=0; Do[y=(a^2+b^2)^0.5; c=IntegerPart[y]; If[c==y, p=0; If[GCD[a, b, c]==1, AppendTo[q, a.b.c]; k++ ]], {b, a+1, a^2}]; PrependTo[q, k]; q)lst={}; Do[If[PyphagoreanAs[n][[1]]==7, Print[n]; AppendTo[lst, n]], {n, 6*10^2, 2*10^3}]; lst

CROSSREFS

Cf. A056866 Orders of non-solvable groups.. A093006 Referring to the triangle in A093005, sequence contains the least term with maximal number of divisors. A138605 Short legs of more than 3 primitive Pythagorean triangles. A033993 Numbers that are divisible by exactly four different primes.

Sequence in context: A349586 A023294 A067235 * A252519 A014362 A143042

Adjacent sequences:  A113168 A113169 A113170 * A113172 A113173 A113174

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Aug 25 2008

EXTENSIONS

More terms from Ray Chandler, Jan 22 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 09:19 EST 2021. Contains 349365 sequences. (Running on oeis4.)