login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113171
Short legs 'A' of exactly 7 primitive Pythagorean triangles.
1
660, 1092, 1140, 1155, 1260, 1320, 1365, 1380, 1428, 1540, 1560, 1740, 1785, 1820, 1860, 1980, 1995, 2184, 2220, 2340, 2380, 2415, 2436, 2460, 2508, 2580, 2604, 2660, 2805, 2820, 2856, 2860, 2940, 3003, 3036, 3060, 3108, 3120, 3135, 3180, 3192, 3220, 3300
OFFSET
1,1
LINKS
FORMULA
a^2+b^2=c^2
EXAMPLE
Examples of triples: 660.779.1021, 660.989.1189, 660.2989.3061, 660.4331.4381, 660.12091.12109, 660.27221.27229, 660.108899.108901
1092.1325.1717, 1092.1595.1933, 1092.6035.6133, 1092.8245.8317, 1092.33115.33133, 1092.74525.74533, 1092.298115.298117
MATHEMATICA
PyphagoreanAs[a_]:=(q={}; k=0; Do[y=(a^2+b^2)^0.5; c=IntegerPart[y]; If[c==y, p=0; If[GCD[a, b, c]==1, AppendTo[q, a.b.c]; k++ ]], {b, a+1, a^2}]; PrependTo[q, k]; q)lst={}; Do[If[PyphagoreanAs[n][[1]]==7, Print[n]; AppendTo[lst, n]], {n, 6*10^2, 2*10^3}]; lst
CROSSREFS
Cf. A056866 Orders of non-solvable groups.. A093006 Referring to the triangle in A093005, sequence contains the least term with maximal number of divisors. A138605 Short legs of more than 3 primitive Pythagorean triangles. A033993 Numbers that are divisible by exactly four different primes.
Sequence in context: A349586 A023294 A067235 * A364004 A252519 A014362
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Ray Chandler, Jan 22 2020
STATUS
approved