login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 3) and t_{i+1} <= 4*t_i for 1<i<n.
13

%I #5 Mar 30 2012 18:36:51

%S 1,1,4,46,1504,146821,45236404,46002427696,159443238441379,

%T 1926751765436372746,82540801108546193896804,

%U 12696517688186899788062326096,7084402815778394692932546017050054

%N Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 3) and t_{i+1} <= 4*t_i for 1<i<n.

%C Equals column 0 of triangle A113095, which satisfies: A113095(n,k) = [A113095^4](n-1,k-1) + [A113095^4](n-1,k).

%H M. Cook and M. Kleber, <a href="http://www.combinatorics.org/Volume_7/Abstracts/v7i1r44.html">Tournament sequences and Meeussen sequences</a>, Electronic J. Comb. 7 (2000), #R44.

%e The tree of 4-tournament sequences of descendents

%e of a node labeled (1) begins:

%e [1]; generation 1: 1->[4]; generation 2: 4->[7,10,13,16];

%e generation 3: 7->[10,13,16,19,22,25,28],

%e 10->[13,16,19,22,25,28,31,34,37,40],

%e 13->[16,19,22,25,28,31,34,37,40,43,46,49,52],

%e 16->[19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64]; ...

%e Then a(n) gives the number of nodes in generation n.

%e Also, a(n+1) = sum of labels of nodes in generation n.

%o (PARI) {a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return(M[n+1,1])}

%Y Cf. A008934, A113077, A113078, A113079, A113085, A113089, A113098, A113100, A113107, A113109, A113111, A113113.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 14 2005