Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 May 07 2021 00:46:32
%S 47,71,119,167,191,287,311,359,407,431,479,527,551,647,671,719,767,
%T 791,839,887,911,959,1007,1031,1127,1151,1199,1247,1271,1319,1367,
%U 1391,1487,1511,1559,1607,1631,1679,1727,1751,1799,1847,1871,1967
%N Odd numbers of the form 4n-1 for which Jacobi-first-non-one(4n-1) differs from Jacobi-first-non-one(4n+1).
%C Here Jacobi-first-non-one(m) (for odd numbers m) is defined as the first value of i >= 1, for which Jacobi symbol J(i,m) is not +1 (i.e. is either 0 or -1).
%F a(n) = 4*A112054(n)-1.
%F a(n) = A112057(n)-2 = A112058(n)-1.
%t a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; 4*Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &] - 1 (* _Indranil Ghosh_, May 24 2017 *)
%o (Python)
%o from sympy import jacobi_symbol as J
%o def a112046(n):
%o i=1
%o while True:
%o if J(i, 2*n + 1)!=1: return i
%o else: i+=1
%o def a(n): return a112046(2*n) - a112046(2*n - 1)
%o print([4*n - 1 for n in range(1, 1001) if a(n)!=0]) # _Indranil Ghosh_, May 24 2017
%Y Cf. A112054, A112057, A112058.
%K nonn
%O 1,1
%A _Antti Karttunen_, Aug 27 2005