login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112056
Odd numbers of the form 4n-1 for which Jacobi-first-non-one(4n-1) differs from Jacobi-first-non-one(4n+1).
4
47, 71, 119, 167, 191, 287, 311, 359, 407, 431, 479, 527, 551, 647, 671, 719, 767, 791, 839, 887, 911, 959, 1007, 1031, 1127, 1151, 1199, 1247, 1271, 1319, 1367, 1391, 1487, 1511, 1559, 1607, 1631, 1679, 1727, 1751, 1799, 1847, 1871, 1967
OFFSET
1,1
COMMENTS
Here Jacobi-first-non-one(m) (for odd numbers m) is defined as the first value of i >= 1, for which Jacobi symbol J(i,m) is not +1 (i.e. is either 0 or -1).
FORMULA
a(n) = 4*A112054(n)-1.
a(n) = A112057(n)-2 = A112058(n)-1.
MATHEMATICA
a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; 4*Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &] - 1 (* Indranil Ghosh, May 24 2017 *)
PROG
(Python)
from sympy import jacobi_symbol as J
def a112046(n):
i=1
while True:
if J(i, 2*n + 1)!=1: return i
else: i+=1
def a(n): return a112046(2*n) - a112046(2*n - 1)
print([4*n - 1 for n in range(1, 1001) if a(n)!=0]) # Indranil Ghosh, May 24 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 27 2005
STATUS
approved