

A112013


Primes p such that there exists at least one number j and pi(p)= d_1 d_2 ... d_j*d_(j+1) d_(j+2) ... d_k where d_1 d_2 ...d_k is the decimal expansion of p.


3



17, 73, 619, 1117, 64591, 64601, 64661, 2077121, 5070613, 8883067, 2121104897, 4387047283, 14304478789, 503890508623, 1547037000637
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence is the prime subsequence of the sequence A112012. There is no further term up to prime(26000000).
Contribution from David Wasserman, Mar 26 2009: (Start)
In all terms after 64661, d_(j+1) = 0.
No more terms < prime(822900000) (End)
a(16) > 2*10^12.  Giovanni Resta, Feb 27 2013


LINKS

Table of n, a(n) for n=1..15.


EXAMPLE

8883067 is in the sequence because 8883067 is prime;
pi(8883067)=595161 & 595161=8883*067. Note that for this term j=4.


MATHEMATICA

Do[If[MemberQ[h=IntegerDigits[Prime[m]]; k=Length[h]; Table[FromDigits[Table[h[[i]], {i, j}]]*FromDigits[Table[h[[i]], {i, j+1, k}]], {j, k}], m], Print[m]], {m, 26000000}]


CROSSREFS

Cf. A112012.
Sequence in context: A201262 A146658 A145440 * A165691 A154419 A208399
Adjacent sequences: A112010 A112011 A112012 * A112014 A112015 A112016


KEYWORD

base,more,nonn


AUTHOR

Farideh Firoozbakht, Oct 09 2005


EXTENSIONS

More terms from David Wasserman, Mar 26 2009
a(14)a(15) from Giovanni Resta, Feb 27 2013


STATUS

approved



