login
A112012
Numbers n such that there exists at least one number j and pi(m) = d_1 d_2 ... d_j*d_(j+1) d_(j+2) ... d_k where d_1 d_2 ...d_k is the decimal expansion of n.
1
16, 17, 73, 132, 224, 322, 342, 352, 362, 619, 1017, 1117, 1196, 1516, 2163, 2215, 3514, 3714, 5137, 11373, 12012, 12121, 13120, 17116, 21113, 25911, 51045, 64541, 64581, 64591, 64601, 64611, 64651, 64661, 64691, 64701, 64711, 64721, 100967
OFFSET
1,1
COMMENTS
A112013 is the prime subsequence of this sequence.
EXAMPLE
pi(16)=1*6 so j=1; pi(342)=34*2 so j=2; pi(12012)=120*12 so j=3;
pi(64541)=6454*1 so j=4, etc.
MATHEMATICA
Select[Range[10, 200000], MemberQ[h=IntegerDigits[ # ]; k=Length[h]; Table[FromDigits[Table[h[[i]], {i, j}]]*FromDigits[Table[h[[i]], {i, j+1, k}]], {j, k}], PrimePi[ # ]] &]
CROSSREFS
Cf. A112013.
Sequence in context: A097220 A041530 A041528 * A003999 A217844 A041532
KEYWORD
base,nonn
AUTHOR
Farideh Firoozbakht, Sep 04 2005
STATUS
approved