login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111997
Ninth convolution of Schroeder's (second problem) numbers A001003(n), n>=0.
1
1, 9, 63, 399, 2403, 14067, 80949, 460845, 2605590, 14666470, 82320714, 461238282, 2581644378, 14442658074, 80785970838, 451934259654, 2528977211775, 14157983986839, 79302044283297, 444448115168049, 2492468172937125
OFFSET
0,2
LINKS
FORMULA
G.f.: ((1+x-sqrt(1-6*x+x^2))/(4*x))^9.
a(n) = (9/n)*Sum_{k=1,..,n} binomial(n,k)*binomial(n+k+8,k-1).
a(n) = 9*hypergeom([1-n, n+10], [2], -1), n>=1, a(0)=1.
Recurrence: n*(n+9)*a(n) = (7*n^2+51*n+32)*a(n-1) - (7*n^2+33*n-22)*a(n-2) + (n-3)*(n+6)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 9*sqrt(3*sqrt(2)-4)*(577-408*sqrt(2)) * (3+2*sqrt(2))^(n+9)/(64*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
MATHEMATICA
CoefficientList[Series[((1+x-Sqrt[1-6*x+x^2])/(4*x))^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
PROG
(PARI) x='x+O('x^50); Vec(((1+x-sqrt(1-6*x+x^2))/(4*x))^9) \\ G. C. Greubel, Mar 17 2017
CROSSREFS
Ninth column of convolution triangle A011117.
Sequence in context: A073378 A316461 A022733 * A016137 A230547 A339786
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved