OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
FORMULA
G.f.: ((1+x-sqrt(1-6*x+x^2))/(4*x))^8.
a(n)= (8/n)*Sum_{k=1,..,n} binomial(n,k)*binomial(n+k+7,k-1).
a(n) = 8*hypergeom([1-n, n+9], [2], -1), n>=1, a(0)=1.
Recurrence: n*(n+8)*a(n) = (7*n^2+44*n+21)*a(n-1) - (7*n^2+26*n-24)*a(n-2) + (n-3)*(n+5)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ sqrt(3*sqrt(2)-4)*(338-239*sqrt(2)) * (3+2*sqrt(2))^(n+8)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
MATHEMATICA
CoefficientList[Series[((1+x-Sqrt[1-6x+x^2])/(4x))^8, {x, 0, 20}], x] (* Harvey P. Dale, Apr 01 2011 *)
PROG
(PARI) x='x+O(x^50); Vec(((1+x-sqrt(1-6*x+x^2))/(4*x))^8) \\ G. C. Greubel, Mar 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved