login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111996
Eighth convolution of Schroeder's (second problem) numbers A001003(n), n>=0.
1
1, 8, 52, 312, 1802, 10200, 57092, 317544, 1760035, 9738160, 53844184, 297717712, 1646893140, 9116815952, 50514367512, 280173703472, 1555632093093, 8647009926904, 48117998453036, 268057662257096, 1494927614877214
OFFSET
0,2
LINKS
FORMULA
G.f.: ((1+x-sqrt(1-6*x+x^2))/(4*x))^8.
a(n)= (8/n)*Sum_{k=1,..,n} binomial(n,k)*binomial(n+k+7,k-1).
a(n) = 8*hypergeom([1-n, n+9], [2], -1), n>=1, a(0)=1.
Recurrence: n*(n+8)*a(n) = (7*n^2+44*n+21)*a(n-1) - (7*n^2+26*n-24)*a(n-2) + (n-3)*(n+5)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ sqrt(3*sqrt(2)-4)*(338-239*sqrt(2)) * (3+2*sqrt(2))^(n+8)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
MATHEMATICA
CoefficientList[Series[((1+x-Sqrt[1-6x+x^2])/(4x))^8, {x, 0, 20}], x] (* Harvey P. Dale, Apr 01 2011 *)
PROG
(PARI) x='x+O(x^50); Vec(((1+x-sqrt(1-6*x+x^2))/(4*x))^8) \\ G. C. Greubel, Mar 16 2017
CROSSREFS
Cf. Eighth column of convolution triangle A011117.
Sequence in context: A279283 A257285 A125345 * A016129 A006631 A205218
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 12 2005
STATUS
approved