login
A111861
a(n) is the number of integers k > 0 such that (n+k)/(n-k)^2 is an integer.
1
1, 2, 2, 5, 2, 4, 4, 4, 2, 4, 4, 4, 3, 4, 3, 7, 2, 4, 3, 4, 2, 7, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 2, 6, 3, 5, 4, 4, 3, 6, 3, 4, 4, 4, 2, 6, 3, 4, 3, 4, 3, 6, 2, 4, 3, 6, 2, 6, 3, 4, 5, 4, 3, 4, 2, 5, 6, 4, 3, 6, 4, 4, 2, 4, 3, 6, 2, 5, 6, 4, 2, 4, 3, 4, 3, 5, 3, 6, 2, 4, 4, 6, 3, 6, 3, 5, 3, 4, 3, 4, 3, 4, 4, 4, 2
OFFSET
0,2
COMMENTS
First occurrence of n [0,500] is at a(k): 0,1,12,5,3,33,15,210,105, ..., . - Robert G. Wilson v, Nov 23 2005
LINKS
EXAMPLE
For n=14 we have integer value for the form when k={13; 15; 18} and (14+k)/(14-k)^2 = {27, 29, 2}. Thus a(14) = 3
MAPLE
g:= proc(n) nops(select(t -> ((n+t)/(n-t)^2)::integer, {$1..floor(n+(1+sqrt(8*n+1))/2)} minus {n})) end proc:
map(g, [$0..105]); # Robert Israel, Oct 30 2024
MATHEMATICA
f[n_] := Length[Select[(n + #)/(n - #)^2 & /@ Range[n^2 + 3], IntegerQ[ # ] &]]; Array[f, 105] (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A351346 A061034 A245635 * A004543 A153078 A245565
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Nov 23 2005
Corrected by Robert Israel, Oct 30 2024
STATUS
approved