Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 30 2012 18:36:50
%S 0,1,0,-2,0,216,0,-568464,0,36058658688,0,-53694310935340800,0,
%T 1790669979087018171448320,0,-1280832788659041410080025283840000,0,
%U 18961468161294510864200732026858464699187200,0
%N Column 0 of the matrix logarithm (A111813) of triangle A078121, which shifts columns left and up under matrix square; these terms are the result of multiplying the element in row n by n!.
%C Surprisingly, the e.g.f. A(x) is an odd function: A(-x) = -A(x). Let q=2; the g.f. of column k of A078121^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).
%H Paul D. Hanna, <a href="/A111814/b111814.txt">Table of n, a(n), n== 0..50.</a>
%F E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(2^j*x)/(j+1). E.g.f. satisfies: x/(1-x^2) = Sum_{n>=1}Prod_{j=0..2*n}A(2^j*x)/(j+1).
%e E.g.f.: A(x) = x - 2/3!*x^3 + 216/5!*x^5 - 568464/7!*x^7 + ...
%e where A(x) satisfies:
%e x/(1-x) = A(x) + A(x)*A(2*x)/2! + A(x)*A(2*x)*A(2^2*x)/3!
%e + A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
%e also:
%e x/(1-x^2) = A(x) + A(x)*A(2*x)*A(2^2*x)/3!
%e + A(x)*A(2*x)*A(2^2*x)*A(2^3*x)*A(2^4*x)/5! + ...
%e Let G(x) be the g.f. of A002577 (column 1 of A078121), then
%e G(x) = 1 + 2*A(x) + 2^2*A(x)*A(2*x)/2! +
%e 2^3*A(x)*A(2*x)*A(2^2*x)/3! +
%e 2^4*A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
%o (PARI) {a(n,q=2)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
%Y Cf. A078121 (triangle), A002577, A111813 (matrix log); A110505 (q=-1), A111816 (q=3), A111819 (q=4), A111824 (q=5), A111829 (q=6), A111834 (q=7), A111839 (q=8).
%K sign
%O 0,4
%A _Gottfried Helms_ and _Paul D. Hanna_, Aug 22 2005