login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111661
Expansion of eta(q)^4 * eta(q^2) * eta(q^6)^5 / eta(q^3)^4 in powers of q.
2
1, -4, 1, 16, -24, -4, 50, -64, 1, 96, -120, 16, 170, -200, -24, 256, -288, -4, 362, -384, 50, 480, -528, -64, 601, -680, 1, 800, -840, 96, 962, -1024, -120, 1152, -1200, 16, 1370, -1448, 170, 1536, -1680, -200, 1850, -1920, -24, 2112, -2208, 256, 2451, -2404, -288, 2720, -2808, -4
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 226 Entry 4(i).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 6 sequence [-4, -5, 0, -5, -4, -6, ...].
Expansion of q * psi(q)^2 * phi(-q)^3 * psi(q^3)^2 / phi(-q^3) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Mar 01 2011
Expansion of (b(q^2)^3 - b(q)^3) / 9 in powers of q where b() is a cubic AGM theta function. - Michael Somos, Mar 01 2011
Expansion of (1/3) * b(q) * b(q^2) * c(q^2)^2 / c(q) in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jul 09 2012
a(n) is multiplicative with a(2^e) = (-4)^e, a(3^e) = 1, a(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 6), a(p^e) = (1 - (-p^2)^(e+1)) / (p^2 + 1) if p == 5 (mod 6). - Michael Somos, Mar 01 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 243^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A214262.
G.f.: Sum_{k>0} Kronecker(k, 3) * k^2 * x^k / (1 - x^(2*k)) = x * Product_{k>0} (1 - x^k)^4 * (1 - x^(2*k)) * (1 + x^(3*k))^5 * (1 - x^(3*k)).
EXAMPLE
G.f. = q - 4*q^2 + q^3 + 16*q^4 - 24*q^5 - 4*q^6 + 50*q^7 - 64*q^8 + q^9 + ...
MATHEMATICA
a[ n_]:= If[ n < 1, 0, Sum[ Mod[ n/d, 2] d^2 KroneckerSymbol[d, 3], {d, Divisors[n]}]]; (* Michael Somos, Jul 09 2012 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[eta[q]^4* eta[q^2]*eta[q^6]^5/eta[q^3]^4, {q, 0, 30}], q] (* G. C. Greubel, Apr 18 2018 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^2 * kronecker(d, 3)) )};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^2 + A) * eta(x^6 + A)^5 / eta(x^3 + A)^4, n))};
CROSSREFS
Sequence in context: A059991 A002568 A334063 * A072651 A209411 A369912
KEYWORD
sign,mult
AUTHOR
Michael Somos, Aug 08 2005
STATUS
approved