login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A001541(n)*A001653(n+1) + A001541(n)*A002315(n) + A001653(n+1)*A002315(n).
3

%I #36 Feb 06 2024 10:17:45

%S 3,71,2379,80783,2744211,93222359,3166815963,107578520351,

%T 3654502875939,124145519261543,4217293152016491,143263821649299119,

%U 4866752642924153523,165326326037771920631,5616228332641321147899

%N a(n) = A001541(n)*A001653(n+1) + A001541(n)*A002315(n) + A001653(n+1)*A002315(n).

%H Ray Chandler, <a href="/A111649/b111649.txt">Table of n, a(n) for n = 0..652</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).

%F a(n) = A001653(2n+2) - 2*A002315(n)^2, e.g., 2379 = 5741 - 2*41^2;

%F a(n) = A001652(2n) + A002315(n)^2 + 2, e.g., 2379 = 696 + 41^2 + 2;

%F a(n) = 2*A046176(n+1)+1, e.g., 2379 = 2*1189 + 1.

%F G.f.: (x^2+34*x-3) / ((x-1)*(x^2-34*x+1)). - _Colin Barker_, Dec 14 2014 [adjusted for corrected term and empirical g.f. confirmed for more terms and recurrence of source sequences. - _Ray Chandler_, Feb 05 2024]

%e a(1) = 71 = 3*5 + 3*7 + 5*7.

%t LinearRecurrence[{35, -35, 1}, {3, 71, 2379}, 20] (* _Paolo Xausa_, Feb 06 2024 *)

%Y Cf. A001541, A001653, A002315, A111647, A111648.

%K nonn

%O 0,1

%A _Charlie Marion_, Aug 24 2005

%E a(3) = 80783 corrected by _Ray Chandler_, Feb 05 2024