login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111580
Expansion of eta(q)^2 * eta(q^2) * eta(q^10)^3 / eta(q^5)^2 in powers of q.
2
1, -2, -2, 4, 1, 4, -6, -8, 7, -2, 12, -8, -12, 12, -2, 16, -16, -14, 20, 4, 12, -24, -22, 16, 1, 24, -20, -24, 30, 4, 32, -32, -24, 32, -6, 28, -36, -40, 24, -8, 42, -24, -42, 48, 7, 44, -46, -32, 43, -2, 32, -48, -52, 40, 12, 48, -40, -60, 60, -8, 62, -64, -42, 64, -12, 48, -66, -64, 44, 12, 72, -56, -72, 72
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 249, Entry 8(i).
LINKS
Shaun Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328; see p. 318, Th. 4.1.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of q * psi(q)^3 * psi(q^5) - 5*q^2 * psi(q) * psi(q^5)^3 in powers of q where psi() is a Ramanujan theta function.
Euler transform of period 10 sequence [-2, -3, -2, -3, 0, -3, -2, -3, -2, -4, ...].
G.f.: Sum_{k>0} Kronecker(k, 5) * k * x^k / (1 - x^(2*k)) = x * Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k)) * (1 + x^(5*k))^2 * (1 - x^(10*k)).
a(2*n) = -2*a(n).
From Amiram Eldar, Jan 28 2024: (Start)
a(n) = (-1)^(n+1) * A138558(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(12*sqrt(5)) = 0.367818... . (End)
EXAMPLE
G.f. = q - 2*q^2 - 2*q^3 + 4*q^4 + q^5 + 4*q^6 - 6*q^7 - 8*q^8 + 7*q^9 - 2*q^10 + ...
MATHEMATICA
a[n_] := Sum[Mod[n/d, 2]*d*KroneckerSymbol[d, 5], {d, Divisors[n]}]; Table[a[n], {n, 1, 74}](* Jean-François Alcover, May 11 2012, after PARI *)
a[ n_] := SeriesCoefficient[ (1/16) (EllipticTheta[ 2, 0, q]^3 EllipticTheta[ 2, 0, q^5] - 5 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^5]^3), {q, 0, 2 n}]; (* Michael Somos, Jul 12 2012 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d * kronecker( d, 5)))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^10 + A)^3 / eta(x^5 + A)^2, n))};
(PARI) q='q+O('q^99); Vec(eta(q)^2*eta(q^2)*eta(q^10)^3/eta(q^5)^2) \\ Altug Alkan, Apr 18 2018
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Aug 08 2005
STATUS
approved