The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111537 Column 1 of triangle A111536. 7
 1, 2, 8, 44, 296, 2312, 20384, 199376, 2138336, 24936416, 314142848, 4252773824, 61594847360, 950757812864, 15586971531776, 270569513970944, 4959071121374720, 95721139472072192, 1941212789888952320, 41271304403571227648, 918030912312297752576, 21325054720042613565440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of triangle in A200659. - Philippe Deléham, Nov 21 2011 REFERENCES A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p.141 (10.19). H. P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..250 Herman P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973. FORMULA a(n) = A111536(n+1, 1) = 2*A111536(n, 0) = 2*A111529(n) for n >= 1. G.f.: log(Sum_{n>=0} (n+1)!*x^n) = Sum_{n>=1} a(n)*x^n/n. a(n+1) = (n+3)! - 2*(n+2)! - Sum_{k=0..n-1} (n-k+1)!*a(k+1). a(n+1) is the moment of order n for the measure of density x*exp(-x)/((x*exp(-x)*Ei(x)-1)^2+(Pi*x*exp(-x))^2) on the interval 0..infinity. G.f.: 1/(1-2*x/(1-2*x/(1-3*x/(1-3*x/(1-4*x/(1-4*x/(1-5*x/(1-...(continued fraction). - Philippe Deléham, Nov 21 2011 G.f. (1-U(0))/x; where U(k) = 1-x*(k+1)/(1-x*(k+2)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jun 29 2012 G.f. -1 + 1/x + U(0)/x where U(k) = 2*x - 1 + 2*x*k - x^2*(k+1)*(k+2)/U(k+1), U(0)=x - W(1,1;-x)/W(1,2;-x), W(a,b,x)= 1 - a*b*x/1! + a*(a+1)*b*(b+1)*x^2/2! - ... + a*(a+1)*...*(a+n-1)*b*(b+1)*...*(b+n-1)*x^n/n! + ...; see [A. N. Khovanskii, p. 141 (10.19)]; (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 15 2012 G.f.: 1/Q(0), where Q(k) = 1 + k*x - x*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013 G.f.: 1/x - 1/( x*G(0)), where G(k) = 1 - x*(k+1)/(x -  1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013 a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 05 2020 MAPLE a:= proc(n) option remember; `if`(n=0, 1,       n*(n+1)! -add((n-k+1)!*a(k), k=1..n-1))     end: seq(a(n), n=0..30);  # Alois P. Heinz, May 06 2013 MATHEMATICA a[n_] := a[n] = If[n==0, 1, n*(n+1)! - Sum[(n-k+1)!*a[k], {k, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *) PROG (PARI) {a(n)=if(n<0, 0, (matrix(n+2, n+2, m, j, if(m==j, 1, if(m==j+1, -m+1, -(m-j-1)*polcoeff(log(sum(i=0, m, (i+1)!/1!*x^i)), m-j-1))))^-1)[n+2, 2])} CROSSREFS Cf. A111536, A111529, A200659. Sequence in context: A179489 A240165 A318977 * A051045 A112912 A303613 Adjacent sequences:  A111534 A111535 A111536 * A111538 A111539 A111540 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 06 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 15:13 EST 2022. Contains 350656 sequences. (Running on oeis4.)