login
A111505
Right half of Pascal's triangle (A007318) with zeros.
0
1, 0, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 6, 4, 1, 0, 0, 0, 10, 5, 1, 0, 0, 0, 20, 15, 6, 1, 0, 0, 0, 0, 35, 21, 7, 1, 0, 0, 0, 0, 70, 56, 28, 8, 1, 0, 0, 0, 0, 0, 126, 84, 36, 9, 1, 0, 0, 0, 0, 0, 252, 210, 120, 45, 10, 1, 0, 0, 0, 0, 0, 0, 462, 330, 165
OFFSET
0,5
COMMENTS
A034869 is the version without zeros.
FORMULA
Sum_{n, n>=k} T(n, k) = A001700(k).
Sum_{k =0..2*n} T(2*n, k) = A032443(n).
Sum_{k=0..2*n+1} T(2*n+1, k) = 4^n = A000302(n).
Sum_{k=0..2*n} T(2*n, k)^2 = A036910(n).
Sum_{k=0..2*n+1} T(2*n+1, k)^2 = C(4*n+1, 2*n) = A002458(n) . Paul D. Hanna
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 0, 3, 1;
0, 0, 6, 4, 1;
0, 0, 0, 10, 5, 1;
0, 0, 0, 20, 15, 6, 1;
0, 0, 0, 0, 35, 21, 7, 1;
0, 0, 0, 0, 70, 56, 28, 8, 1;
0, 0, 0, 0, 0, 126, 84, 36, 9, 1;
0, 0, 0, 0, 0, 252, 210, 120, 45, 10, 1;
0, 0, 0, 0, 0, 0, 462, 330, 165, 55, 11, 1;
0, 0, 0, 0, 0, 0, 924, 792, 495, 220, 66, 12, 1;
0, 0, 0, 0, 0, 0, 0, 1716, 1287, 715, 286, 78, 13, 1;
0, 0, 0, 0, 0, 0, 0, 3432, 3003, 2002, 1001, 364, 91, 14, 1;
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Nov 16 2005
STATUS
approved