The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111459 Generalized Somos-4 sequence with a(n-2)^2 replaced by a(n-2)^5. 3
 1, 1, 1, 1, 2, 3, 35, 313, 26261407, 1001689887346, 356879751557595054813966522072161803, 3221974575788016845202611315068840860244866942009716269469 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..14 S. Fomin and A. Zelevinsky, The Laurent Phenomenon, Advances in Applied Mathematics 28 (2002), 119-144. D. Gale, Tracking the Automatic Ant, Springer (1998), pp. 1-5. D. Gale, The strange and surprising saga of the Somos sequences, Math. Intelligencer 13(1) (1991), pp. 40-42. D. Gale, Somos sequence update, Mathematical Intelligencer 13 (4) (1991), 49-50. FORMULA a(n) = (a(n-1)*a(n-3) + a(n-2)^5)/a(n-4) for n >= 4 with a(0) = a(1) = a(2) = a(3) = 1. As n tends to infinity, log(log(a(n)))/n tends to (1/2)*log((5 + sqrt(21))/2) or about 0.783. MAPLE L:=0; L:=0; L:=0; L:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-5*L[n+2]))+5*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: this calculates L[n]=ln(a[n]) and illustrates slow convergence of ln(ln(a[n]))/n to 0.783... CROSSREFS Cf. A006720, A072876, A072877. Sequence in context: A199696 A234423 A165448 * A042663 A072291 A325500 Adjacent sequences:  A111456 A111457 A111458 * A111460 A111461 A111462 KEYWORD nonn AUTHOR Andrew Hone, Nov 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 17:52 EST 2021. Contains 349343 sequences. (Running on oeis4.)