login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111096
Partial sums of A137701.
2
16, 232, 59281, 10059281, 4049575228945, 1950244643588320, 30041944445326335483061, 32095019157463691981298869, 142108579247039194637916834814494, 108199957883829576141601541930838816381470, 118558455387984539329682688832638841343258239487
OFFSET
1,1
COMMENTS
a(n) is prime for n = 3, 4, ..., a(n) is semiprime for n = 7, 8, 11, ...
FORMULA
a(n) = Sum_{i=1..n} A001358(i)^A000040(i).
EXAMPLE
a(1) = 16 because semiprime(1)^prime(1) = 4^2 = 16.
a(2) = 232 because 4^2 + 6^3 = 232.
a(3) = 59281 = 4^2 + 6^3 + 9^5, which is a prime.
a(4) = 10059281 = 4^2 + 6^3 + 9^5 + 10^7, which is a prime.
a(7) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 = 428081461 * 70178102025601, which is semiprime.
a(8) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 + 22^19 = 47 * 682872748031142382580827, which is semiprime.
a(11) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 + 22^19 + 25^23 + 26^29 + 33^31 = 17 * 6974026787528502313510746401919931843721072911 which is semiprime.
CROSSREFS
KEYWORD
easy,nonn,less
AUTHOR
Jonathan Vos Post, Oct 13 2005
STATUS
approved