login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Kekulé numbers for certain benzenoids.
1

%I #19 Nov 05 2019 15:40:09

%S 1,22,193,1045,4180,13566,37764,93456,210705,440440,864721,1610401,

%T 2866864,4908580,8123280,13046616,20404233,31162242,46587145,68316325,

%U 98440276,139597810,195085540,268983000,366294825,493111476,656790057

%N Kekulé numbers for certain benzenoids.

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 243, H*(2,6,n)).

%H Chai Wah Wu, <a href="/A110690/b110690.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F a(n) = (n+1)*(n+2)^2*(n+3)*(n+4)(31*n^3 + 236*n^2 + 545*n + 420)/20160.

%F G.f.: (1 + 13*x + 31*x^2 + 16*x^3 + x^4)/(1-x)^9. - _R. J. Mathar_, Nov 01 2015

%p a:=n->(n+1)*(n+2)^2*(n+3)*(n+4)*(31*n^3+236*n^2+545*n+420)/20160: seq(a(n),n=0..31);

%t CoefficientList[Series[(1+13*x+31*x^2+16*x^3+x^4)/(1-x)^9, {x,0,50}], x] (* _G. C. Greubel_, Sep 06 2017 *)

%t LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,22,193,1045,4180,13566,37764,93456,210705},30] (* _Harvey P. Dale_, Nov 05 2019 *)

%o (Python)

%o A110690_list, m = [], [62, -65, 20, 0, 1, 1, 1, 1, 1]

%o for _ in range(10001):

%o A110690_list.append(m[-1])

%o for i in range(8):

%o m[i+1] += m[i] # _Chai Wah Wu_, Jun 12 2016

%o (PARI) x='x+O('x^50); Vec((1+13*x+31*x^2+16*x^3+x^4)/(1-x)^9) \\ _G. C. Greubel_, Sep 06 2017

%K nonn,easy

%O 0,2

%A _Emeric Deutsch_, Aug 02 2005