OFFSET
0,2
COMMENTS
The exponential generating function of the triangular numbers was given in Sloane & Plouffe as g(x) = (1 + 2x + (x^2)/2)*e^x = 1 + 3*x + 3*x^2 + (5/3)*x^3 + (5/8)*x^4 + (7/40)*x^5 + (1/896)*x^6 + (11/72576)*x^7 + ... = 1 + 3*x/1! + 6*(x^2)/2! + 10*(x^3)/3! + 15*(x^4)/4! + ...
REFERENCES
Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995, p. 9.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Triangular Number.
FORMULA
a(n)/A110561(n) is the n-th coefficient of the exponential generating function of T(n), the triangular numbers A000217.
a(n) = Denominator((n+2)!*HarmonicNumber(n+2)/binomial(n+2,2)). [Gary Detlefs, Dec 03 2011]
EXAMPLE
a(3) = 5 because T(3+1)/3! = T(4)/3! = (4*5/2)/(1*2*3) = 10/6 = 5/3 so the fraction has numerator 5 and denominator A110561(3) = 3. Furthermore, the 3rd term of the exponential generating function of the triangular numbers is (5/3)*x^3.
MATHEMATICA
T[n_] := n*(n + 1)/2; Table[Numerator[T[n + 1]/n! ], {n, 0, 82}]
Join[{1}, Numerator[With[{nn=90}, Rest[Accumulate[Range[nn+1]]]/ Range[ nn]!]]] (* Harvey P. Dale, Feb 17 2016 *)
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, Jul 27 2005
EXTENSIONS
Extended by Ray Chandler, Jul 27 2005
STATUS
approved