login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110474 Numbers n such that n in binary representation has a block of exactly a nontrivial triangular number number of zeros. 6
8, 17, 24, 34, 35, 40, 49, 56, 64, 68, 69, 70, 71, 72, 81, 88, 98, 99, 104, 113, 120, 129, 136, 137, 138, 139, 140, 141, 142, 143, 145, 152, 162, 163, 168, 177, 184, 192, 196, 197, 198, 199, 200, 209, 216, 226, 227, 232, 241, 248, 258, 259, 264, 272, 273, 274 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) is the index of zeros in the complement of the triangular number analog of the Baum-Sweet sequence, which is b(n) = 1 if the binary representation of n contains no block of consecutive zeros of exactly triangular number length >1; otherwise b(n) = 0. The sequence b(n) = 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,... is not yet in the OEIS and is too sparse to be attractively shown.
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 157.
LINKS
J.-P. Allouche, Finite Automata and Arithmetic, Séminaire Lotharingien de Combinatoire, B30c (1993), 23 pp.
FORMULA
a(n) is in this sequence iff a(n) (base 2) has a block (not a sub-block) of A000217(k) zeros for some k>1.
EXAMPLE
a(1) = 8 because 8 (base 2) = 1000, which has a block of 3 zeros, where 3 is a nontrivial triangular number (A000217(2)).
16 is not an element of this sequence because 16 (base 2) = 10000 which has a block of 4 zeros, which is not a triangular number (even though it has sub-blocks of the triangular number 3 zeros).
a(2) = 17 because 17 (base 2) = 10001, which has a block of 3 zeros (and is a Fermat prime).
a(4) = 34 because 34 (base 2) = 100010, which has a block of 3 zeros.
a(9) = 64 because 64 (base 2) = 1000000, which has a block of 6 zeros, where 6 is a nontrivial triangular number (A000217(3)).
2049 is in this sequence because 2049 (base 2) = 100000000001, which has a block of 10 zeros, where 10 is a nontrivial triangular number (A000217(4)).
65537 is in this sequence because 65537 (base 2) = 10000000000000001, which has a block of 15 zeros, where 15 is a nontrivial triangular number (A000217(5)) and happens to be a Fermat prime.
4194305 is in this sequence because, base 2, has a block of 21 zeros, where 21 is a nontrivial triangular number (A000217(6)),
MATHEMATICA
f[n_] := If[Or @@ (First[ # ] == 0 && Length[ # ] > 1 && IntegerQ[(1 + 8*Length[ # ])^(1/2)] &) /@ Split[IntegerDigits[n, 2]], 0, 1]; Select[Range[500], f[ # ] == 0 &] (* Ray Chandler, Sep 16 2005 *)
ntnQ[n_]:=AnyTrue[Length/@Select[Split[IntegerDigits[n, 2]], FreeQ[#, 1]&], #>1 && OddQ[ Sqrt[8#+1]]&]; Select[Range[300], ntnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 31 2020 *)
CROSSREFS
Sequence in context: A031458 A044991 A063594 * A118066 A044060 A121283
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Sep 08 2005
EXTENSIONS
Corrected by Ray Chandler, Sep 16 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 20:15 EDT 2024. Contains 374475 sequences. (Running on oeis4.)